Targeted Exon Skipping to Correct Exon Duplications in the Dystrophin Gene

نویسندگان

  • Kane L Greer
  • Hanns Lochmüller
  • Kevin Flanigan
  • Susan Fletcher
  • Steve D Wilton
چکیده

Duchenne muscular dystrophy is a severe muscle-wasting disease caused by mutations in the dystrophin gene that ablate functional protein expression. Although exonic deletions are the most common Duchenne muscular dystrophy lesion, duplications account for 10-15% of reported disease-causing mutations, and exon 2 is the most commonly duplicated exon. Here, we describe the in vitro evaluation of phosphorodiamidate morpholino oligomers coupled to a cell-penetrating peptide and 2'-O-methyl phosphorothioate oligonucleotides, using three distinct strategies to reframe the dystrophin transcript in patient cells carrying an exon 2 duplication. Differences in exon-skipping efficiencies in vitro were observed between oligomer analogues of the same sequence, with the phosphorodiamidate morpholino oligomer coupled to a cell-penetrating peptide proving the most effective. Differences in exon 2 excision efficiency between normal and exon 2 duplication cells, were apparent, indicating that exon context influences oligomer-induced splice switching. Skipping of a single copy of exon 2 was induced in the cells carrying an exon 2 duplication, the simplest strategy to restore the reading frame and generate a normal dystrophin transcript. In contrast, multiexon skipping of exons 2-7 to generate a Becker muscular dystrophy-like dystrophin transcript was more challenging and could only be induced efficiently with the phosphorodiamidate morpholino oligomer chemistry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In search of an oasis: opportunity in the Middle East.

Background: Antisense-mediated exon skipping is currently one of the most promising therapeutic approaches for Duchenne muscular dystrophy (DMD). Using antisense oligonucleotides (AONs) targeting specific exons the DMD reading frame is restored and partially functional dystrophins are produced. Following proof of concept in cultured muscle cells from patients with various deletions and point mu...

متن کامل

Prevention of dystrophic pathology in severely affected dystrophin/utrophin-deficient mice by morpholino-oligomer-mediated exon-skipping.

Duchenne muscular dystrophy (DMD) is a severe neuromuscular disorder caused by mutations in the dystrophin gene that result in the absence of functional protein. Antisense-mediated exon-skipping is one of the most promising approaches for the treatment of DMD because of its capacity to correct the reading frame and restore dystrophin expression, which has been demonstrated in vitro and in vivo....

متن کامل

Partnerships to protect.

Background: Antisense oligonucleotides (AOs) can interfere with exon recognition and intron removal during pre-mRNA processing, and induce excision of a targeted exon from the mature gene transcript. AOs have been used in vitro and in vivo to redirect dystrophin pre-mRNA processing in human and animal cells. Targeted exon skipping of selected exons in the dystrophin gene transcript can remove n...

متن کامل

Identification of Small Molecule and Genetic Modulators of AON-Induced Dystrophin Exon Skipping by High-Throughput Screening

One therapeutic approach to Duchenne Muscular Dystrophy (DMD) recently entering clinical trials aims to convert DMD phenotypes to that of a milder disease variant, Becker Muscular Dystrophy (BMD), by employing antisense oligonucleotides (AONs) targeting splice sites, to induce exon skipping and restore partial dystrophin function. In order to search for small molecule and genetic modulators of ...

متن کامل

Targeted Skipping of Human Dystrophin Exons in Transgenic Mouse Model Systemically for Antisense Drug Development

Antisense therapy has recently been demonstrated with great potential for targeted exon skipping and restoration of dystrophin production in cultured muscle cells and in muscles of Duchenne Muscular Dystrophy (DMD) patients. Therapeutic values of exon skipping critically depend on efficacy of the drugs, antisense oligomers (AOs). However, no animal model has been established to test AO targetin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2014